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Abstract. The dynamics of a microsecond electric explosion of a tungsten wire in water is
studied. A theoretical search for conditions of liquid wire radial uniformity is given. A new
optical methods of temperature and radius measurements has been worked out. Mathematical
modelling has been carried out to confirm the existence of radial uniformity and to compare
the results with experimental and theoretical data. Conditions for the radial uniformity
existence of liquid wire heating are presented; as tungsten uniform heating takes place at
1011 A m−2 < j < 1012 A m−2, one can use these regimes for investigation of the properties
of liquid matter. The temperature dependence of liquid tungsten conductivity is given and
compared with literature values. It is shown that vaporization begins with surface layers at
chosen regimes of electric wire explosion.

1. Introduction

Acquiring knowledge on thermophysical properties of liquid metals is of considerable
interest for most of the new energy technologies. Unfortunately direct measurements by
static methods are impossible for most metals because of the extreme temperatures involved,
especially for the refractory metals.

Therefore fast dynamic techniques have been used while measuring temperatures by
optical methods. A more promising method is a method of wire self-heating by an electric
current [1]. This method allows us to investigate a set of thermophysical properties of
metals; the limitation of its applicability is caused by loss of the specimen uniformity. It
is necessary to select the parameters of the specimen and the electric circuit in such a way
that one can provide a stable process without losing the wire radial uniformity. We can
seez-instabilities directly and we can avoid them by choosing parameters of the fine wire
and the electric circuit. Therefore we must show that there is a radial uniformity of the
exploding specimen in the range of parameters used.

At present uniform heating of solid specimens has been investigated well, but the
uniformity of a liquid specimen has not been studied adequately. In this paper theoretical
research on the radial uniformity of a liquid expanding wire is presented; theoretical results
are compared with results of mathematical modelling and experimental data.

2. Theoretical model

The radial uniformity of the solid (nonexpanding) conductor caused by skin effects is well
studied [2]. After wire melting there takes place its hydrodynamic expansion caused by
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heating. Therefore there appears an additional item for the expression of the current density
jz = σ(Ez+ vBϕ) (wherev is the expansion velocity of the heating wire,Ez is the electric
field, Bϕ is the magnetic induction andσ is the electrical conductivity). So, it is necessary
to solve the diffusion equation of the magnetic field taking into account a wire expansion.
The one-dimensional diffusion equation for cylindrical coordinates can be written

∂Bϕ

∂t
+ ∂(vBϕ)

∂r
= 1

µσ

∂

∂r

(
1

r

∂(rBϕ)

∂r

)
(1)

with initial and boundary conditions

Bϕ(r, t
0) = µI 0

2π(a0)2
r Bϕ(a, t) = µI

2πa
Bϕ(0, t) = 0 (2)

whereµ is the absolute magnetic permittivity,I is the heating current,a is the wire radius,
and the superscript 0 refers to the moment of melting.

To find the conditions for radial uniformity of the current density we shall research
the solution of a set of MHD equations describing uniform expansion of a circular liquid
heating wire

∂ρ

∂t
+ ρ
r

∂(rv)

∂r
= 0 (3)

∂T

∂t
= I 2R

mc
(4)

ρ

(
∂v

∂t
+ v ∂v

∂r

)
= −∂P

∂r
− 0.5

µr2

∂(r2B2
ϕ)

∂r
(5)

and the telegraph equation

L
d2I

dt2
+ d(RI)

dt
+ I

C
= 0 (6)

wherem is the specimen mass;ρ is the mass density;T , P are the temperature and
the pressure, respectively;c is the specific heat;L is the inductance;C is the capacitor
capacitance;R(t) is the resistance of the specimen involved. As there is no uniform
analytic solution of the MHD equation set in cylindrical coordinates [3], we shall find a
slightly nonuniform solution and this solution should be stable.

The initial and boundary conditions can be written at the moment of melting completion
t = t0

ρ(r, t0) = ρ0 T (r, t) = T 0 v(a, t) = da/dt v(0, t) = 0
a(t0) = a0 I (t0) = I 0 (dI/dt)0 = ω0I 0 R(t0) = R0. (7)

We add the equation of state for the weak compressible medium which can be written as

ρ = ρ0[1− α(T )(T − T 0)] (8)

(where α is the thermal expansion coefficient), and also the temperature and density
dependence of the conductivity which can be approximated by [4]

σ(ρ, T ) = σ 0

[1+ β(T − T 0)]

(
ρ

ρ0

)
(9)

whereβ is the thermal coefficient of the conductivity for the liquid metal.
As a result of equation (3) the radial velocity of uniform wire expansion isv(r, t) =

(da/dt)(r/a) = ur and the relation of the density to the wire radius is then given by
ρ/ρ0 = (a0/a)2.
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If we assume that the following conditions are observed:

τf �
√
CL τf � (βA)−1 τf � [α(δ − 1)A]−1 τf � (ω)−1 (10)

whereτf is the lifetime of the uniformity;A = (I 0)2R0/(mc), then there are the approximate
solutions of set (3)–(7)

I ' I 0 exp(ωτ) R ' R0+ R1τ

a ' a0 exp(uτ) T ' T 0+ Aτ (11)

whereτ = t − t0, ω = (dI/dt)0/I 0, u = 0.5αA.
If u < |ω| � 4(µσa2)−1, then
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Since the valueω may be either positive or negative,j (a) > j (0) with ω > 0, and
j (a) < j (0) with ω < 0 can occur.

Substitution of (12) in (5) gives

P ' P(a, t)+
[
µI 2

(2πa)2

(
1+ 3(µσω)2

16
(a2+ r2)

)
+ ρ

2

{
a

d2a

dt2
+
(

da

dt

)2}](
1− r

2

a2

)
(14)

whereP(a, t) is the ambient pressure. One can estimate the nonuniformity depending on the
magnetic pressure distribution. On estimating the critical value of the current density for liq-
uid tungsten we can writejcr ∼ 2×108/a0. If a0 ∼ 0.2 mm, thenjcr ∼ 1012 A m−2, there-
fore we can conclude that the simple equation of state (8) forj < 1012 A m−2 can be used.

3. Brief description of a specific system

The specimen was submerged in water in order to prevent shunt paths around the specimen.
In this work a fast bichromatic pyrometer is used to carry out temperature measurements.

The radiation flow of the heated specimen is focused into the aperture plane, then it is
collimated and after that it is directed to an optical dividing cube to form two optical
channels. Each of the channels has its interference filter with different pass-bands.

In the present work six filters are used to expand a range of temperatures measured
(wavelength centred on 415, 467, 530, 567, 606 and 656 nm with narrow-band1λi ∼
10 nm) and to cover the whole portion of the spectral sensibility of the detectors used. The
radiation flows were registered by photomultipliers; at the same time heating current and
specimen voltage drop were measured.

4. Details of measurements

4.1. Temperature

The thermal state of the specimen can be characterized by a conditional temperature, the
so-called integral colour temperature (similar to [5])(∫ b∗i

a∗i

ε(λ, T )r(λ, T )ψ1i (λ) dλ

)(∫ b∗j

a∗j

ε(λ, T )r(λ, T )ψ2j (λ) dλ

)−1

=
(∫ b∗i

a∗i

r(λ, Tic)ψ1i (λ)dλ

)(∫ b∗j

a∗j

r(λ, Tic)ψ2j (λ) dλ

)−1

(15)
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whereε(λ, T ) is the emissivity,r(λ, T ) is the spectral density of a black body,Tic is the
integral colour temperature;ψ1i , ψ2j are the apparatus functions of the pyrometer channels;
(a∗i , b

∗
i ) = (λi − 0.51λi , λi + 0.51λi) is the working range of theith interference filter.

For the spectral density of a black body the Planck formula is used to determine the
integral colour temperature from (15)

r(λ, T ) = C1

λ5

[
exp

(
C2

λT

)
− 1

]−1

(16)

whereC1 andC2 are the first and second radiation constants, respectively.
In this paper the ratio of two pyrometer signals is used, therefore it is sufficient to have

only the relative calibration of the channel sensibilities [6]

b1(λi)

b2(λj )
= Sij

(∫ b∗i

a∗i

r(λ, Tic)ψ1i (λ) dλ

)(∫ b∗j

a∗j

r(λ, Tic)ψ2j (λ) dλ

)−1

(17)

wherebi is the signal of theith pyrometer channel;Sij is the ratio of the relative calibration
of pyrometer channels for each pair of filters, and it is achieved at calibrating by the filament
tungsten lamp used as a light source.

So Tic is the root of equation (17) with the right-hand side calculated by numerical
integration. To determine a temperature with minimum error it is necessary to use
a pyrometer signal from a nearest-neighbour pass-band of filters as the difference of
emissivities for a nearest-neighbour wavelength will be vanishing with vanishing wavelength
difference. If the temperature-dependent part of the emissivityε(T ) is constant or is the
same for different pass-bands one can use any pair of filters to determine the temperature.

4.2. Radius

The influence of the specimen expansion is excluded from the ratiob1/b2 but each of the
pyrometer signals includes this information. We can write for the same channel at different
moments

b(λi, t2)

b(λi, t1)
∼ s(t2)

s(t1)

f (T2)

f (T1)
(18)

where

f (Tic) =
∫ b∗i

a∗i

r[λ, Tic(t)]ψ1i (λ) dλ (19)

s(t) ∼ a(t)d is the visible area of the emissive wire with an aperture;d is the aperture
diameter (a � d � l; l is the length of the specimen).

If temperature dependences of emissivities differ much for different pass-bands and there
exists aλ∗j for which ε(λ∗j , T ) ≈ constant, then the information from pyrometer signals can
be used for investigation of the dynamics of wire expansion. Such a wavelengthλ∗j is
needed to diminish the errors of radius determination. The pyrometer signal in this wave
can be used as a basic signal to findTic, which then is used to determine the wire radius. The
more methodical the errors of radius measurements are, the more the emissivityε(λ∗j , T )
differs from a constant value.

Therefore the following ratio can be used to calculate the time dependent radius:

a(t)

a(t0)
= b(λi, t)

b(λi, t0)

f (T 0
ic)

f (Tic)
(20)
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wherea(t0) is the radius at the moment of melting completion, thent0 is the moment of
melting completion andT 0 is the melting temperature.

After calculating the integral colour temperatureTic from (17), the ratio of pyrometer
signalsb1(λi, t)/b2(λi, t

0) and the ratio of the functionsf (T 0
ic)/f (Tic) can be found, then

the radius for each point of time can be determined from the product of these values and
the radius at the melting moment.

In formula (17) the ratiob1(λi)/b2(λ
∗
j ) is proportional toε(λi, T )/ε(λ∗j ); therefore if

we use for radius determinationTic(t) (for metals with different dependencesε(λi, T )) then
Tic(t) does not describe the real temperatureT (t), but is a function describing the change
of temperatureT (t) and the change of emissivityε(λi, t) as well. Thus on determination
of radiusa(t) using the temperatureTic(t) found from (17) uponλ∗j is the same because
the temperature dependence of emissivityε(λi, T ) is taken into account.

5. Mathematical modelling

Mathematical modelling of a one-dimensional cylindric wire explosion was carried out
for investigation of the radial uniformity. The set of MHD equations for the Lagrangian
description and telegraph equation can be written
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dt
= 0 (21)

ρ
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∂r
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d(µBϕ)

dt
= ∂

∂r

(
1
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(24)

d2(LI)

dt2
+ d(RI)

dt
+ I

C
= 0 (25)

whereε(ρ, T ) is the specific internal energy;Ew is the specific energy loss by superficial
radiation;k(r = a) = 1, k(r 6= a) = 0, κ is the heat conductivity.

Specific conductivity can be calculated similarly (9); coefficients in this formula depend
upon the phase diagram region for which this expression is written. Conductivity in
the melting region can be determined fromσ = vσ1(1 − v)σ2, where v is the volume
concentration of phase 1;σ1 andσ2 are the conductivities of phases 1 and 2, accordingly.
In the liquid–vapour coexistence region the conductivity can be defined as the conductivity
of the effective medium [7], assuming that conductivity on the right branch of theP–V
plane binodal is equal to zero. The heat conductivity can be calculated fromκ = kWFT σ
[4].

The evolution of the wire heating process at the initial stage can be simulated by
equations (21), (23)–(25), assuming weak compressibility:ρ = ρ0 [1 − α(T )(T − T0)],
with the initial conditions defined at the moment of current switching on:I (0) = 0;
(dI/dt)t=0 = U0/L; ρ(0, r) = ρ0; T (0, r) = T0; v(0, r) = 0; Bϕ(0, r) = 0; jz(0, r) = 0.
The flow parameters obtained at the moment of the melting completion can be taken as
initial conditions for the set (21)–(25).
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Figure 1. The time-dependent heating current and specimen voltage drop. ——,- - - -,
numerical data for voltage and current respectively,∗, ×, experimental data for voltage and
current, respectively (regime 1);◦, M, experimental data for voltage and current, respectively
(regime 2).

Figure 2. The time-dependent resistance of tungsten wire: ——, numerical data;∗, experimental
data;•, data defined in accordance with (11).

The liquid and gas matter state can be described by Van der Waals–Maxwell equations

P = RT

V − b −
a

V 2
ε = ε0+ cv(T − T 0)+ (ρ0− ρ) (26)

µf − µg =
∫ g

f

dµ =
∫ g

f

V dP =
∫ g

f

V

(
∂P

∂V

)
T

dV = 0 (27)

whereV = 1/ρ is the specific volume;µf andµg are the chemical potentials of liquid and
gas accordingly; constantsa andb can be calculated from ratios for the critical parameters,
which were given in [8]; joining coefficientsε0, T 0 andρ0 are determined at the melting
point. Equation (26) is taken for specific internal energy with the specific heat equal to
a constant. Equation (27) defines the medium behaviour in the liquid–vapour coexistence
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Figure 3. Time-dependent temperature (a) and radius (b) of tungsten wire: ——, numerical
date;∗, experimental data;◦, data defined in accordance with (11).

region. The equations (9), (26) and (27) give a qualitative description of the main properties
of matter in the region of interest of the phase diagram (liquid metal and liquid–vapour
coexistence region); a more correct description is rather difficult.

The boundary conditions at the symmetry axis can be defined as the conditions of
cylindrical symmetry; the conditions at the outer boundary can be taken as the water
parameters at normal conditions assuming the wire submerging into the infinite water
medium described by the equation of state (26) and (27) with appropriate constantsa

andb.

6. Results

Optical investigation of temperature and radius for a cylindrical tungsten wire has been
carried out for the following parameters:a01 = 0.175 mm, l = 8.7 cm, L = 4.5 µH,
C = 6µF,U0 = 20 kV (regime 1) and also with a different initial wire radiusa02 = 0.1 mm
(regime 2).
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Figure 4. The temperature dependence of tungsten conductivity: ——, numerical data (formula
(9) with β = 2×10−5 K−1 andδ = 0.67 for liquid metal);∗, experimental data;�, (9),◦, [10];
N, [11].

Figure 5. The propagation of boiling wave along the radius of a tungsten wire. Figures on the
curves show the time in microseconds.

Mathematical modelling has been carried out for the same regimes. The coefficients
δ = 0.67 andβ = 2 × 10−5 K−1 for liquid tungsten in formula (9) were found from
the observed data of regime 1. Regime 2 was modelled with the same coefficients. The
comparison of the numerical and experimental results for the heating current and the voltage
in the two regimes can be seen in figure 1.

It is seen that the mathematical model describes well the mode of current and voltage
change to the moment of the voltage peak, but after that a difference between the numerical
and experimental data is noted.

The time-dependent resistance (figure 2) has three so-called ‘steps’. The first ‘step’
is caused by the resistance rise during heating at a solid phase (in this temperature range
there exists a strong interdependence between conductivity and temperature) and during
wire melting. The second ‘step’ corresponds to the time of the tungsten wire surface layer
boiling and the third ‘step’ corresponds to boiling of inner layers. As the wire resistance
increases up to vanishing current it is clear that breakdown does not take place in this
process.
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Analysing theoretical and numerical results one can conclude that regimes of tungsten
electric explosion with 1011 A m−2 < j < 1012 A m−2 are uniform, therefore it can be
used for investigation of matter properties in the range from melting temperature to boiling
temperature (under normal conditions). Atj < 1011 A m−2 andj > 1012 A m−2 current re-
distributes along the radius because of the wire expansion and diffusion of the magnetic field.

As after preliminary calibration the melting temperature was found to differ by∼ 5%
from the well known data, we carried out an additional calibration according to the melting
temperature. After that the temperature of boiling was found to differ by∼ 3% from the
well known data. This confirms the reliability of temperature measurements. The accurate
estimation of methodical error in temperature and radius measurements is rather difficult.

Numerical, theoretical and experimental data of time dependence of temperature and
radius are shown in figure 3(a) and (b) respectively. One can see that the thermal expansion
coefficient was a little higher according to the above state equation. The time-dependent
temperature (for the temperature range from melting to boiling upon the normal conditions)
is in good agreement with experimental data. After that surface layers peel off on vaporizing
and mix with surrounding water and this leads to cooling of these layers (such cooling was
observed during experiments), therefore the experimental data for the processes taking place
inside a wire cannot be obtained.

Numerical and experimental temperature-dependent conductivity is given in figure 4;
for comparison the data obtained by other authors [9–11] are given too. The value of liquid
tungsten conductivity changes from 0.755 to 0.690 MS m−1 (in the range of temperatures
from melting to boiling); other authors give the following values: 0.685 [12]; 0.725 [13];
0.730 [14]; 0.758 [15]; 0.787 [16]; 0.826 [17] MS m−1.

One can see from the numerical results that on uniform heating of liquid metal matter
vaporization begins with the wire surface; this is in agreement with experimental results
[18]. The numerical data allow us to see the propagation of boiling wave from the surface to
the centre of the wire. The radial distributions of density at different moments are shown in
figure 5: one can see that phase transition occurs in a transition layer (with widthδt ∼ 50–
70µm), which is a liquid–vapour coexistence region. The density diminishes about tenfold
across the transition layer. The phase boundary moves to the wire centre with an average
velocity equal to about 40 m s−1. The velocity of the boiling wave can be estimated in
an indirect way from experimental data. It can be seen from figures 1 and 3(a) that the
boiling starts at the moment of the voltage riset ∼ 5.2 µs, and the completion of wire
boiling probably corresponds to the current drop to vanishing value at the abrupt rising of
the wire resistance (as the vapour is weakly conductive). Therefore the time for boiling
wave propagation from surface to centre isτb ∼ 6 µS, and so the average velocity of this
wave isw ∼ 30 m s−1. Thus numerical data are in agreement with experimental data.

7. Summary

As the experiments were carried out in a uniform heating regime, we can say that properties
observed can be treated as average matter properties (in the range from melting to boiling
temperatures). After the beginning of surface boiling the data for the surface processes
cannot be taken as representative of the processes in the whole volume of the wire.

The conductivity of liquid tungsten changes slightly with rising temperature; this is in
agreement with theory [19].

Numerical modelling shows that the boiling wave propagation from the surface to the
centre of the wire has an average velocity of about 40 m s−1; this result agrees well with
indirect experimental data.
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